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Summary

The results presented here are part of an ongoing research program, to develop strain

rate dependent deformation and failure models for the analysis of polymer matrix

composites subject to high strain rate impact loads. A micromechanics approach is

employed in this work, in which state variable constitutive equations originally developed

for metals have been modified to model the deformation of the polymer matrix, and a

strength of materials based micromechanics method is used to predict the effective

response of the composite. In the analysis of the inelastic deformation of the polymer

matrix, the definitions of the effective stress and effective inelastic strain have been

modified in order to account for the effect of hydrostatic stresses, which are significant in

polymers. Two representative polymers, a toughened epoxy and a brittle epoxy, are

characterized through the use of data from tensile and shear tests across a variety of strain

rates. Results computed by using the developed constitutive equations correlate well

with data generated via experiments. The procedure used to incorporate the constitutive

equations within a micromechanics method is presented, and sample calculations of the

deformation response of a composite for various fiber orientations and strain rates are
discussed.

Introduction

NASA Glenn Research Center has an ongoing research program to investigate the

feasibility of developing jet engine fan containment systems composed of polymer matrix

composite materials. To design such a system, the ability to correctly predict the

nonlinear, strain rate dependent deformation and failure of the composite under high

strain rate loading conditions is required. Under these types of loading conditions, the

material response can be highly strain rate dependent and nonlinear. To design a

composite containment system, the ability to accurately predict the nonlinearity and strain

rate dependence of the composite response is essential.

In previous work, Goldberg (ref. 1) modified the Ramaswamy-Stouffer (ref. 2) state

variable constitutive equations in order to model the nonlinear, strain rate dependent

deformation response of polymeric matrix materials. The constitutive equations were

then implemented within a strength of materials based micromechanics model in order to
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predict the effective strain rate dependent, nonlinear deformation response of carbon fiber

reinforced polymer matrix composites.

Polymers are known to have a strain rate dependent deformation response that is

nonlinear above about one or two percent strain. Traditionally, viscoelasticity models

have been used to capture this behavior (ref. 3). However, there has been an interest in

the research community in using constitutive equations developed for metals, based on

plasticity and viscoplasticity approaches, to model the nonlinear, strain rate dependent

behavior of polymers and polymer matrix composites. The deformation mechanisms of

polymers and metals are quite different. However, on the phenomelogical level, there are

some similarities in the deformation response that could justify the use of models

developed for metals to analyze polymers. For example, Ward (ref. 4) defined the "yield

stress" in polymers as the stress level in a uniaxial tensile test where the stress-strain

curve becomes flat and the inelastic strain rate equals the total strain rate. This definition
is identical to how the "saturation stress" has been defined in state variable based

constitutive models for metals (ref. 2). Furthermore, Ward (ref. 4) talks about the use of

internal stresses to represent on the macroscopic level the effects of the resistance to

molecular flow. Similarly, in state variable viscoplastic constitutive models for metals

state variables are used (ref. 5) to represent on a macroscopic level the resistance to
inelastic deformation.

There are specific examples in the literature where researchers have utilized plasticity

and viscoplasticity techniques to analyze the nonlinear, strain rate dependent response of

polymers and polymer matrix composites. For example, Sun and Chen (ref. 6) developed

a macromechanical plasticity model based on a quadratic plastic potential function to

model the nonlinear deformation of polymer matrix composites. As part of this process,

the effective stress and effective plastic strain were properly defined to coincide with the

plastic potential function. Weeks and Sun (ref. 7) and Thiruppukuzhi and Sun (ref. 8)

expanded the methodology to incorporate rate dependence into the response. Yoon and

Sun (ref. 9) modified the Bodner unified viscoplasticity model developed for metals

(ref. 5) to model the nonlinear, rate dependent deformation of polymer matrix

composites. Sun and Chen (ref. 10) applied plasticity theory to model the behavior of a

polymer matrix, and then applied micromechanics techniques to determine the effective

response of the composite. Zhang and Moore (ref. 11 ) adapted the Bodner model to

analyze the nonlinear uniaxial tensile response of polyethylene. Bordonaro (ref. 12) and

Krempl and Ho (ref. 13) adapted the viscoplasticity theory based on overstress (originally

developed for metals) to analyze the nonlinear deformation of Nylon 66.

Unlike in metals, hydrostatic stresses are known to affect the yield stress and

nonlinear response of polymers (ref. 4). For example, the yield stress in compression is

higher than the yield stress in tension. In a simplified approach that was developed to

account for these effects, the octahedral shear stress of a polymer at yield was set equal to

the octahedral yield stress under pure shear loading plus a constant times the hydrostatic

stress (ref. 14). In more sophisticated techniques based on the Eyring energy approach,

Ward (ref. 4) proposed that the hydrostatic pressure could be added as an additional term

in the equation relating the octahedral strain rate to the octahedral shear stress at yield.

Ellyin, et al. (ref. 15) incorporated mean stress effects into a nonlinear viscoelastic model

for polymers by adding the hydrostatic stresses to the effective stress definition. Hung

and Liechti (ref. 16) incorporated mean stress effects into a macroscopic analysis of

NASA/TM--2002-211702 2



polymermatrix compositesby incorporatinganadditionalterm including thehydrostatic
stressesinto SunandChen's(ref. 6) plasticitymodel. Bordonaro(ref. 12)attemptedto
developamethodto incorporatehydrostaticstressesinto theeffectivestressdefinition to
beusedin constitutivemodelsto analyzepolymersbasedonviscoplasticitytheory. Li
andPan(ref. 17),ChangandPan(ref. 18)andHsu,VoglerandKyraikides(ref. 19)
incorporatedmeanstresseffectsintoviscoplasticitymodelsfor polymersthroughthe
applicationof variationsof theDrucker-Prageryield criteria (ref. 20), in whichmean
stresseffectsareincorporated.By applyingthenewyield criteria,modified definitions
of theeffectivestressandeffectiveplasticstrainrateweredeveloped.While theattempts
to accountfor theeffectsof hydrostaticstressesin developingyield criteriafor polymers
havebeenreasonablysuccessful,theconstitutiveequationsdevelopedto modelthefull
rangeof thenonlineardeformationresponseof polymersusingplasticity and
viscoplasticitytechniqueshavenotbeenfully successfulin capturingthemeanstress
effects.

In previousresearchby theauthors(ref. 1),only tensiletestsof arepresentative
polymermatrix materialwereavailable,alongwith tensiletestsof a carbonfiber
reinforcedpolymermatrixcompositewith variousfiber layups. Therefore,the
constitutiveequationswerecharacterizedbasedon thematrix tensiledata,andthemean
stresseffectswereaccountedfor by multiplying thesheartermsin theeffectivestress
definition by afactorincludingtheratioof themeanstressto thesecondinvariantof the
deviatoricstresstensor(J2)raisedto apower. Thevalueof this exponentwasdetermined
empiricallyby correlatingthetensileresponseof a compositewith asheardominated
fiber layup,suchas [_+45°]2s.

The objective of the current research is to develop a more systematic, physically based

method to account for the mean stress effects in the nonlinear analysis of a polymeric

matrix material, where all of the material characterization is accomplished using resin

data only. Furthermore, through the use of a strength of materials based micromechanics

method, the nonlinear, strain rate dependent deformation of polymer matrix composites

can be predicted, with the mean stress effects appropriately accounted for. In this study,

first the state variable constitutive equations used to predict the strain rate dependent,

nonlinear deformation of the polymer matrix are discussed, and the methods used to

incorporated mean stress effects are described in detail. Next, the model is exercised by

characterizing two representative polymers using tensile and shear data over a variety of

strain rates. The deformation response of the polymers is then computed to demonstrate

the ability of the model to accurately compute the polymer behavior. The

implementation of the constitutive equations within a strength of materials based

micromechanics method is then presented, and the nonlinear, strain rate dependent

deformation response of a representative polymer matrix composite is predicted.

Polymer Constitutive Equations

Overview

For this study, the Bodner state variable constitutive equations (ref. 5), which were

originally developed to analyze the viscoplastic deformation of metals above one-half of

the melting temperature, were modified to analyze the strain rate dependent, nonlinear

deformation of the polymeric matrix material. In state variable constitutive equations, a
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singleunified strainvariableis definedto representall inelastic strains (ref. 2).

Furthermore, in the state variable approach there is no defined yield stress. Inelastic

strains are assumed to be present at all values of stress, only at a very small level in the

"elastic" range of deformation. State variables, which evolve with stress and inelastic

strain, are defined to represent the average effects of the deformation mechanisms.

In previous research on this project (ref. 1), the Ramaswamy-Stouffer model (ref. 2)

was used as the basis for the polymer constitutive equations. In the Ramaswamy-Stouffer

equations as used in reference 1, the components of the inelastic strain rate were a

function of the overstress, the difference between the deviatoric stress components and

the components of the tensorial intemal stress state variable. A material constant in the

equations represented any initial isotropic hardness of the material. In the Bodner

equations (as used and modified for this study) on the other hand, the components of the

inelastic strain rate are a function of the deviatoric stresses only, not the overstress, and

the resistance to inelastic deformation is represented through a single, isotropic, state

variable. This formulation allows for a more systematic modification of the effective

stress definitions in order to account for the mean stress effects. Furthermore, as

discussed in Qian and Liu (ref. 21 ) for example, one can argue that in the initial stages of

polymer deformation an isotropic resistance to molecular flow (simulating a nonlinear

viscosity) more accurately represents the actual polymer behavior.

Several limitations and assumptions have been specified in the development of the

constitutive equations. Currently temperature effects are neglected. While the

deformation response of polymers varies significantly with temperature, only room

temperature data have been obtained at this time, so the effects of temperature are not

considered. However, since temperature effects can be significant, particularly when

considering thermal stresses in polymer matrix composites, this capability will be added

in the future. Moisture effects, while possibly significant in polymer matrix composites,

are also not included at the current time but may be added in the future. The nonlinear

strain recovery observed in polymers on unloading is not simulated, and phenomena such

as creep, relaxation and high cycle fatigue are not currently accounted for in the

equations. However, since mean stress effects are important even in metals for the

analysis of high cycle fatigue (ref. 22), in the future if fatigue analysis capabilities are

added to the constitutive equations for polymers the mean stress effects will likely be

even more significant. Small strain theory is assumed to apply in the current analysis.

Flow and Evolution Equations
-1

In the modified Bodner model, the components of the inelastic strain rate ei/ are

defined as a function of the deviatoric stress components sij, the second invariant of the

deviatoric stress tensor J2 and an isotropic state variable Z which represents the resistance

to molecular flow (internal stress) in the form

2//

exp ....
2 cre

(1)

where Do and n are material constants. Do represents the maximum inelastic strain rate,

and n controls the rate dependence of the material. The elastic components of strain are
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added to the inelastic strain to obtain the total strain. The term tVe represents the effective

stress state in the material, and was modified from the original fonrmlation (ref. 5) in

order to account for the effects of hydrostatic stresses in a polymeric material. Based on

the formulation used by Chang and Pan (ref. 18) and Hsu, et al. (ref. 19), the effective

stress is defined as follows in this work in order to account for the effects of hydrostatic

stresses

a. = + aa ., (2)

where ct is a state variable controlling the level of the mean stress effects and (Ykkis the

summation of the normal stress components (equal to three times the mean stress). This

formulation of the effective stress is based on the Drucker-Prager (ref. 20) yield criteria.

Under pure shear loading, the mean stress is equal to zero and the equation reduces to the

original formulation (ref. 5), in which the effective stress was set equal to _ for all

loading conditions.
The rate of evolution of the internal stress state variable Z and the mean stress effect

state variable _z are defined by the equations

Z = q(Z,-Z)6[ (3)

a : (4)

where q is a material constant representing the "hardening" rate, and Zl and ch are

material constants representing the maximum values of Z and a, respectively• The initial

values of Z and ot are defined by the material constants Zo and Cto. The term b_ in

Equations 3 and 4 represents the effective deviatoric inelastic strain rate, defined as
follows

-'e,, = b k (5)

• 1 "1 .1

•z are the components of the inelastic strain rate tensor and g,z, is the meanwhere e0

inelastic strain rate. In the original Bodner model (ref. 5), the total inelastic strain and

strain rate are used in the evolution law and are assumed to be equal to their deviatoric

values. As discussed by Li and Pan (ref. 17), since mean stresses contribute to the

inelastic strains in polymers, indicating volumetric effects are present, the mean inelastic

strain rate cannot be assumed to be zero, as in the case in the inelastic analysis of metals.

An important point to note is that in the original Bodner model (ref. 5), the inelastic work

rate was used instead of the effective inelastic strain rate in the evolution equation for the

internal stress state variable. However, for this work the inelastic strain rate was deemed

easier to work with from both computational and characterization points of view,

particularly in the incorporation of mean stress effects. Furthermore, the inelastic strain
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ratehasbeenusedin otherstatevariableconstitutivemodels(ref. 2), andaswill be
shownlater,theequationsasgivenproducedgoodresults. Sincehydrostaticstress
effectswerenotconsideredin theoriginal Bodnermodel(ref. 5), the evolution equation
for ct is new to this work. The state variable ct is assumed to evolve in the same manner

as the state variable Z. As will be pointed out later, by using this assumption the value of

q used in Equation 3 will be the same as the value of q used in Equation 4.

Detemaination of Material Constants

The material constants that need to be determined include Do, n, Zo, ZI, t_o, cq, and q.

The procedure to be used is summarized here. More details on the general approach can

be found in Stouffer and Dame (ref. 2) and Bodner (ref. 5). The values of Do, n, and Zj

are characterized as follows using Equation I. The value of D0 is currently assumed to be
equal to a value of 104 times the maximum applied strain rate, which correlates with the

maximum inelastic strain rate. Equation 1 is simplified to the case of pure shear loading,

leading to the following expression

._z = 2Do exp -2 ['4_ rl) J r I 16)

where _i is the engineering shear strain rate, z is the shear stress, and the remainder of

the terms are as defined earlier. The case of pure shear loading is used to characterize the

equations for two reasons. First, mean stress effects are not present in the case of pure

shear loading, so those material constants do not enter into the picture, simplifying the

initial characterization. Second, since polymers tend to be more ductile in shear than in

uniaxial tension, the pure shear stress-strain curves obtained experimentally are more

likely to display a defined "saturation" stress, which as shown below is crucial for

determining the material constants. If only uniaxial tensile and compressive curves are

available, procedures will be given later for determining the equivalent shear stresses at
saturation.

Next, Equation 6 is rearranged as follows

(7)

and the natural logarithm of both sides of the resulting expression is taken. The values of

the inelastic shear strain rate, shear stress, and state variable Z at "saturation" or "yield"

are substituted into the resulting expression, resulting in the following equation

(8)
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where "csequals the saturation shear stress, _>ois the constant applied total engineering

shear strain rate in a constant strain rate shear test, and the remaining terms are as defined

earlier.

The required constants are determined from a set of shear stress-strain curves obtained
from constant strain rate tests. Each curve in this set is obtained at a different constant

strain rate. Data pairs of the total strain rate and saturation shear stress values from each

curve are taken. For each strain rate, the data values are substituted into Equation 8, and

represent a point on a master curve. The number of points in the master curve equal the

number of strain rates at which tensile tests were conducted. A least squares regression

analysis is then performed on the master curve. As suggested by Equation 8, the slope of

the best-fit line is equal to -2n. The intercept of the best-fit line is equal to 2n(ln (Zl)).

To determine the value of Zo, first Equation 7 is rearranged as follows

z= -21nlr I
_,2Do )

(9)

where all of terms are as defined earlier. To find the value of Zo from Equation 9, the

value of the shear stress where the stress-strain curve becomes nonlinear for a particular

constant strain rate shear test is used for the value of'c. The point where the stress-strain

curve becomes nonlinear is defined as the approximate point where the curve appreciably

deviates from a linear extrapolation of the initial data. The value of }>i is set equal to the

approximate inelastic shear strain rate when the stress-strain curve becomes nonlinear.

The shear strain rate used in the test divided by 100 was found by trial and error to

approximate this value reasonably well. Using this data, Equation 9 is solved for Z,

which is assumed to be equal to the value of Zo. Using the data from the lowest strain

rate test available has been found to give adequate values of Zo. However, the

calculations can be made using data from all the available strain rates, and an average

taken if required to obtain the value of the constant.

To determine the value for q for Equations 3 and 4, first Equation 3 is integrated for

the case of pure shear loading, resulting in the following relation

Z= Z,-(Z,-Zo)exp(-7-_y I ) ,43
(10)

where 71 is the inelastic shear strain. At saturation, the value of the internal stress Z is

assumed to approach ZI, resulting in the exponential term approaching zero. Assuming

that saturation occurs when the following condition is satisfied

(11)

the equation is solved for q, where y i is the inelastic shear strain at saturation. If the

inelastic shear strain at saturation is found to vary with strain rate, the parameter q is
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computed at each strain rate and regression techniques are utilized to determine an

expression for the variation of q. If Equation 4 is integrated, an expression similar to

Equation 10 is obtained. At saturation, the value of ct is assumed to approach cq, so an

equation identical to Equation 1 1 is obtained, which would lead to the same value for q.

Therefore, identical values of q are used in Equation 3 and Equation 4.

To obtain the values of 0ll and Oto, Equation 2 is used in combination with stress-strain

data from constant strain rate uniaxial tensile tests and constant strain rate shear tests.

The primary assumption used at this point (and assumed implicitly in Equation 2) is that

the effective stress at saturation under uniaxial tensile loading at a particular strain rate is

equal to the effective stress at saturation under pure shear loading at the same equivalent

strain rate. Likewise, the effective stress at the point the stress-strain curve becomes

nonlinear under tensile loading is equal to the effective stress at the point the stress-strain

curve becomes nonlinear under shear loading. Therefore, assuming the value of _ at

saturation is equal to t_l, and the value of ct at the point the stress-strain curve becomes

nonlinear is equal to Cto, the following equations are obtained for the case of having data

from uniaxial tension tests and pure shear tests

(12)

o ,(1+ (13)

where CYsand "t:sare the tensile and shear stresses at saturation, respectively, and 6nl and

Znl are the tensile and shear stresses at the point where the respective stress-strain curves

become nonlinear. The required constants can then be determined from these equations.

The values of the material constants are assumed to be rate independent, so the results

from only one strain rate need to be used to find the needed parameters. In practical

application of the methodology, the uniaxial tension and pure shear tests used do not have

to be at the exact same effective strain rate. As long as the effective strain rates from the

two tests are approximately equal, the values obtained have been found to be valid.

Similar procedures can be used to determine the values ofoq and oto based on the

results of uniaxial tension and uniaxial compression tests, as well as uniaxial compression

and pure shear tests. If pure shear tests are not available, but the results of constant strain

rate uniaxial tension and constant strain rate uniaxial compression tests at several strain

rates are available, as just mentioned Equation 2 can be used to obtain the values of ct_

and _ in a manner similar to that described above. A procedure similar to that described

in Equations 6-11 could then be used with either the tensile or compressive data to obtain
the remainder of the material constants.

Numerical Integration of Constitutive Equations

To integrate the flow and evolution equations in a computer algorithm, a standard

fourth order Runge-Kutta integration routine was used (ref. 23). For this class of

equations, implicit integration routines have often been used because of their inherent

numerical stability (ref. 2). However, to be able to use the equations in impact studies,

the equations will need to be implemented into a transient dynamic finite element code,

which uses explicit integration schemes. Therefore, an explicit integration scheme was
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usedherein orderto facilitate theeventualfinite elementimplementation.TheRunge-
Kutta methodwasemployedfor this studydueto its simplicity andeaseof
implementation.Straincontrolledloadingwasassumedin thealgorithm in orderto
facilitatetheeventualimplementationof theseequationsintoanexplicit finite element
code. In addition,thetensileandsheartestsconductedin this studywerecarriedout at
constantstrainrate. Therefore,usingastraincontrolledloadingalgorittunsimplified the
analyticalsimulationof theexperiments.

To determinethevaluesof thetotal strain,inelasticstrain,internalstressandmean
stresseffectstatevariableat time t+At, thefollowing algorithmis usedfor eachstepof
theRunge-Kuttaintegration. Thestrainsor strain estimates are passed into the routine.

The stresses are then computed using the elastic constants and the current value of the

inelastic strains. The effective stress is then determined using Equation 2, and the

components of the inelastic strain rate tensor are calculated using Equation 1. From this

information, the effective deviatoric inelastic strain rate is determined using Equation 5,

and the state variable rates are computed using Equations 3 and 4. The elastic constants

and the inelastic strain rates are then used to determine the total strain rates. The Runge-

Kutta algorithm is then used to calculate the revised total and inelastic strains and the
new values of the state variables.

Simulation of Strain Rate Dependent Polymer Shear and Tensile Deformation

To demonstrate the ability of the developed constitutive equations to correctly analyze

the mean stress dependent deformation response of polymers, two representative

materials were analyzed. The first material, PR520, is a toughened epoxy. The second

material, E-862, is a standard brittle epoxy. By examining these materials, the ability of

the constitutive model to correctly analyze a variety of polymers could be examined.

Details of the experimental procedure and experimental results will be given in a future

report. However, a summary is given here for completeness. Longitudinal tensile tests

and pure shear tests were conducted at room temperature on the materials at strain rates

of about 5x10 -5/sec, 1/sec and 400/sec. The low and moderate strain rate tests were

conducted using an Instron hydraulic testing machine. The high strain rate tests were

conducted using a split Hopkinson bar. Engineering stress and engineering strain were
measured until failure.

Shear stress-shear strain curves for PR520 obtained under pure shear loading are

shown in Figure 1 for each of the strain rates examined, while tensile stress-strain curves

are shown in Figure 2. The material has a strain rate dependent, nonlinear deformation

response under both types of loading. For the shear tests at high strain rates, the sharp

increase in stress at the beginning of the loading with negligible increase in strain is most

likely the result of a lack of stress equilibrium at the start of loading. The oscillations

seen in the tensile response at high strain rates are most likely due to the specimen

geometry leading to the stress waves being visible in the response. The failure stresses

under tensile loading appear not to vary with strain rate. The causes of this are still under

investigation. Physical reasons for the constant failure stresses may be related to a

ductile-brittle transition taking place as the strain rate is increased. However, particularly

for the high strain rate tests, the failure stresses may be artificially low due to the

presence of strain gages on the specimen. Shear stress-shear strain curves for E-862 for
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all three strain rates are shown in Figure 3, and tensile stress-strain curves are shown in

Figure 4. The shear stress-strain curves display significant nonlinearity and strain rate

dependence. The tensile specimens at the moderate and high strain rate show a very low

failure stress, much lower than that seen for the low strain rate specimen. The specific

reasons for this are still being studied, but preliminary investigations not discussed here

indicate that the premature failure may be due to the presence of the strain gages and how

they are glued onto the specimen. The other features of the deformation response of

E-862 are similar to those observed for PR520. Again, a detailed discussion of the

experimental results will be given in a future report. The material constants for both

polymers were determined using the procedures described earlier in this report and are
listed in Table 1.

The shear stress-shear strain curves computed for all three strain rates, along with the

experimental results for comparison, are shown in Figure 5 for PR520 and Figure 6 for

E-862. Overall, the computed results correlate well with the experimental values for all

strain rates for both materials. Specifically, the nonlinearity and rate dependence of the

experimental results are captured qualitatively, and the quantitative match between the

experimental and computed results is reasonably good. The high strain rate results are

somewhat underpredicted for both materials (particularly for E-862), particularly at the

lower strains, but this is due to the fact that in the experiments the initial stresses

increased significantly with a negligible increase in strain, and thus the initial modulus of

the material was computed using data obtained after the strain became non-negligible.

Further tests are being conducted in order to obtain refined stress strain curves that do not

have this problem. The overall computed shape of the curves, and the final computed

saturation stresses, compare well with the experimental results, however.

The tensile stress-strain curves computed for all three strain rates, again with the

experimental results for comparison, are shown in Figure 7 for PR520 and Figure 8 for

E-862. Once again, the computed results correlate well with the experimental values for

all three strain rates. The nonlinearity and rate dependence of the experimental results is

captured, and the quantitative comparison between the experimental and computed

results is again good. In the case of the high strain rate results, the oscillated results are

bisected well by the computed values. For the tensile results, the important point to note

is that the material constants were primarily computed using the shear data, and the

comparison of the tensile data to the computed results is still quite good.

To further explore the significance of properly accounting for the mean stress

effects in the analysis, the tensile stress-strain curve for PR520 at the low strain rate of

5× 10 -5/sec is once again considered. In Figure 9, the experimental stress-strain curve,

along with the original computed curve, is presented. Two additional computed results

are given in the figure. First, a tensile curve computed without the mean stress effect

included (Cr.o=al=0) is given. Second, a set of results computed with a constant _ (set

equal to oh) is presented. The tensile curve computed without accounting for mean stress

effects significantly overpredicts the stresses as compared to the experimental results,

indicating that mean stress effects are significant for polymers, and accounting for them

in an analysis is crucial. Furthermore, in the results computed assuming a constant a the

stresses are overpredicted compared to the experimental values for a significant portion

of the nonlinear region of the tensile curve. In most of the attempts by other researchers

to account for the effects of hydrostatic stresses described in the first section of this
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report, the mean stress effects were assumed to be constant (reflected in a static material

property) throughout the course of the deformation. These results indicate that the effect

of the mean stresses does vary throughout the polymer deformation, and must be

accounted for in the analysis.

Composite Micromechanical Analysis

Micromechanical techniques are used to predict the effective properties and

deformation response of the individual plies in a composite laminate. The effective

properties and deformation response are computed based on the properties of the

individual constituents. Lamination theory can then be used to compute the effective

deformation response of the entire composite. The constitutive equations described

above have been implemented within a micromechanics method in order to enable the

prediction of the nonlinear, strain rate dependent deformation response of polymer matrix

composites with the effects of hydrostatic stresses incorporated into the analysis. The

micromechanics method has been described extensively in Goldberg (ref. 24). A

summary of the methodology will be given here.

For this work the unit cell, the smallest material unit for which the response can be

considered to be representative of the entire composite ply, is defined to consist of a

single fiber and its surrounding matrix. Due to symmetry, only one-quarter of the unit

cell was analyzed. The composites are assumed to have a periodic, square fiber packing

and a perfect interfacial bond is specified. The fibers are assumed to be transversely

isotropic and linear elastic with a circular cross-section. The matrix is assumed to be

isotropic, with a rate dependent, nonlinear deformation response computed using the

equations described in the previous section of this report. A key assumption of this

approach is that the in-situ matrix properties are equivalent to the bulk properties of the

polymer. However, the advantage of using this type of methodology is that it is simpler

to conduct experiments on the pure resin and to determine the material constants from the

pure resin data as opposed to trying to back out the resin properties from composite test

data. Furthermore, a key goal of this research is to provide a methodology that facilitates

reducing the amount of testing of the composite that is required to obtain strain rate

dependent material properties that can be input into a finite element code. Conducting

strain rate dependent tensile tests on the pure resin and using that data to predict the

composite deformation response is also much simpler than conducting tests on the

composite. However, if in comparing test data obtained from composite specimens to

analytical predictions it appears that the bulk matrix properties do not accurately reflect

the in-situ state of the matrix, the polymer properties can always be appropriately

adjusted.

The unit cell is divided up into an arbitrary number of rectangular, horizontal slices of

equal thickness, as is shown in Figure 10. Similar approaches have been used by

researchers such as Whitney (ref. 25), Greszczuk (ref. 26) and Mital, et al. (ref. 27). Each

slice is assumed to be in a state of plane stress. This assumption is made based on the

fact that laminate theory will be applied to each ply of the composite laminate, which

implies that the unit cell and every slice within the unit cell is in a state of plane stress.

The top and bottom slices in the unit cell are composed of pure matrix. The remaining

slices are composed of two subslices; one composed of fiber material and the other
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composed of matrix material. For the slices containing both fiber and matrix, the out-of-

plane stresses can be nonzero in individual subslices, but the volume average of the out-

of-plane stresses must be equal to zero. By using this approach, the behavior of each

slice is decoupled, and the response of each slice can be determined independently, which

significantly reduces the level of complexity in the analysis. Laminate theory is then

used to obtain the effective response of the unit cell. In the future, the ability to

incorporate transverse shear stresses and transverse pressures will be added to the model

as these loading conditions might be significant in an impact analysis. In this case, the

out-of-plane stresses would be constant throughout the unit cell.

The thickness, fiber volume ratio and thickness ratio (the ratio of the slice thickness

to the total unit cell thickness) for each slice can be determined using the composite fiber

volume ratio and geometric principles. The unit cell is assumed to measure one unit in

length by one unit in height. The first step is to compute the area of the cross-section of

the fiber within each slice. The overall diameter of the fiber (dO is related to the fiber

volume fraction of the overall composite (Vf) through the following relationship

(19)

and this term can be used along with the standard geometric definition of the radius of a

circle to compute the horizontal coordinate of any point on the outer surface of the fiber

in terms of the fiber volume fraction and the vertical coordinate. The area of the portion

of the fiber contained within each slice (Af i) can computed by integrating the resulting

expression between the vertical (z) coordinates of the top and bottom of slice 'T'

Zi- I

(20)

which is also the equivalent area of the rectangular fiber slice in the analysis cell.

The fiber volume fraction of each slice composed of fiber and matrix is equal to the

fiber area in each slice divided by the total slice area. The thickness ratio for each slice

composed of both fiber and matrix is equal to the slice thickness divided by the assumed

total height of the analysis cell. The fiber volume fraction of the top slice consisting of

matrix only is equal to zero, and the thickness ratio of the top slice is equal to one minus

the sum of the thickness ratio of the remaining slices.

The effective properties, effective inelastic strains and effective thermal strains of

each slice are computed independently. The responses of each slice are combined using

laminate theory to obtain the effective response of the corresponding lamina.

Micromechanics equations are developed for those slices composed of both fiber and

matrix material. The stresses in the slices composed of pure matrix can be computed

using the matrix elastic properties and inelastic constitutive equations. The standard

transversely isotropic compliance matrix (or isotropic in the case of the matrix) is used to
relate the local strains to the local stresses in the fiber and matrix. Each slice is assumed

to be in a state of plane stress on the global level, but out-of-plane normal stresses can
exist in each subslice.
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Along thefiber direction(direction11), the strainsareassumedto beuniform in each
subslice,andthe stressesarecombinedusingvolumeaveraging.The in-plane transverse

normal stresses (22 direction) and the in-plane shear stresses (12 direction) are assumed

to be uniform in each subslice, and the strains are combined using volume averaging.

The out-of-plane strains (33 direction) are assumed to be uniform in each subslice. The

volume average of the out-of-plane stresses in each subslice is assumed to be equal to

zero, enforcing a plane stress condition on the global level for the slice.

The orthotropic compliance matrix is used to relate the strains (e 0) to the stresses (_3U)

in each constituent, using the following relations

s,i s:, s  jto _,j L< t<_,J
(21)

?'1: = $66¢r l:+2a[- _ (22)

where oh j, (z22, and 0_33are the coefficients of thermal expansion, AT is the change in

temperature and EiJ are the inelastic strains. Note that in these equations Sij represents the

components of the compliance matrix, not the components of the deviatoric stress tensor

sij as in the description of the polymer constitutive equations and that the coefficients of

thermal expansion ¢z0 have no relation to the material constants cq and Oto in the polymer

model. Also note that engineering shear strains (70) are used in the analysis.

The addition of the inelastic strain components to the standard orthotropic elastic

constitutive law facilitates the incorporation of inelasticity into the constitutive relations.

For the fiber, which is assumed to be linear elastic, these components are neglected. For

the fiber, which is transversely isotropic, &3 is set equal to $12 and S33 is set equal to $22.

For the matrix material, which is assumed to be isotropic, $23 and S_3 are set equal to S_2,

and $2., and $33 are set equal to S 1_. Furthermore, 0t33 is set equal to 522 for the fiber and

0_33and 0t.22are set equal to oq_ for the matrix.

By combining the uniform stress and uniform strain assumptions with the constituent

stress-strain relations, a system of four simultaneous equations results that can be solved
for the unknown stresses in the subslices. The total strains and subslice inelastic strains

are considered to be the known values in solving this problem. By substituting the

subslice stresses back into the equations defining the uniform stress assumptions, the

effective elastic constants, effective inelastic strains and effective thermal strains of the

slice can be computed. By applying classical laminate theory at this point, the effective

stiffness matrix, effective inelastic strains and effective thermal strains for the unit cell

are computed. Laminate theory is applied once again to obtain the effective properties

and force resultants due to inelastic and thermal strains for the multilayered composite

laminate. Further information on all of these procedures can be found in Goldberg

(ref. 24).
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Simulation of Strain Rate Dependent Composite Deformation

To verify the ability of the micromechanics equations combined with the revised

polymer constitutive equations to accurately model the deformation response of polymer

matrix composites, a series of analyses have been carried out on a representative

composite. Experimental tests have not yet been conducted on composites made using

either of the polymers (PR520 and E-862) described in the previous section. Therefore,

data from literature was used to verify the implementation of the revised polymer

constitutive equations into the micromechanics framework. A PEEK thermoplastic

matrix was characterized using the procedures described earlier based on data in Hsu,

et al. (ref. 19) and the material constants are listed in Table 1. Experimental (ref. 19) and

computed compressive stress-strain curves are shown for the PEEK matrix in Figure 11.

The computed stress-strain curves capture the rate dependence and nonlinearity of the

experimental results, and the quantitative comparison between the experimental and

computed results is quite good. These results further demonstrate the ability of the

polymer constitutive equations to analyze the deformation response of a wide variety of

polymers (epoxies, toughened epoxies and thermoplastics). The composite material
examined consists of AS4 carbon fibers embedded in a PEEK matrix. Tensile curves

were obtained by Weeks and Sun (ref. 7) for composites with a variety of laminate
orientations at strain rates of l×10 -5/sec and 0.1/sec. The fiber volume ratio of the

AS4/PEEK composite is 0.62. The elastic properties of the AS4 fibers (ref. 28) include a

longitudinal tensile modulus of 214 GPa, a transverse tensile modulus of 14 GPa, a

longitudinal Poisson's ratio of 0.20, a transverse Poisson's ratio of 0.25, and an in-plane

shear modulus of 28 GPa. As mentioned earlier, while thermal and moisture effects may

affect the deformation response in polymer matrix composites, since temperature and

moisture dependent data was not available for the matrix materials under consideration,

and since these effects were not accounted for within the polymer constitutive equations

at the current time, thermal and moisture effects were neglected for these analyses. The

effects of temperature and moisture are merely noted as a possible source of error in the

current computations.

Experimental and computed longitudinal tensile stress-strain curves for AS4/PEEK at

room temperature at strain rates of 0.00001/sec and 0.1/sec are shown in Figures 12 and

13. Only relatively low strain rates were examined due to the lack of available high

strain rate data for this material and its matrix constituent. Also, note that the tensile

curves are not necessarily taken until failure. Furthermore, the current analytical model

does not make failure predictions. In Figure 12 results for laminates with a [30 °] fiber

orientation are shown and in Figure 13 results for laminates with a [45 °] fiber orientation

are shown. With these fiber orientations, the matrix in the composite is subjected to a

multiaxial stress state, with tensile, compressive, and shear stresses, and as a result the

ability of the micromechanics method in combination with the polymer constitutive

equations to accurately capture the mean stress effects in the polymer deformation (and

by extension the composite deformation) could be examined. As can be seen in both

figures, the nonlinearity and strain rate dependence of the composite deformation as well

as the shape of the curves are captured by the analysis. Quantitatively, the match

between the experimental and computed results is also reasonably good. The stresses for
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the [45 °] laminate at the lower strain rate are somewhat overpredicted for reasons that are

not clear at this time, but otherwise the computed stresses closely match the experimental
stresses. Since for the laminate orientations examined both tensile and shear stresses are

present in the composite, the analytical results indicate that the mean stress effects are

also being captured correctly.

Conclusions

An analytical model has been developed to analyze the strain rate dependent,

nonlinear deformation of polymers and polymer matrix composites in which the effects

of hydrostatic stresses on the nonlinear deformation are systematically accounted for.

State variable constitutive equations based on the Bodner viscoplasticity model have been

modified to analyze the deformation of polymer matrix materials. The effects of

hydrostatic stresses on the inelastic deformation have been accounted for by modifying

the effective stress and effective plastic strain definitions through the use of a variation of

the Drucker-Prager yield criterion. The tensile and shear deformation of two

representative polymers have been accurately simulated using the constitutive model.

The constitutive equations have been implemented within a mechanics of materials

based micromechanics method that employs fiber substructuring to enable the prediction

of the strain rate dependent, nonlinear deformation of polymer matrix composites. The

longitudinal tensile deformation of a representative polymer matrix composite was

accurately predicted for two laminate orientations and two strain rates, indicating that the

analysis is correctly capturing the important features of the deformation response.

The analytical methods described in this study can be used in explicit finite element

codes to provide a more realistic analysis of deformation during blade-out events for fan

containment systems composed of composite materials. While all of the loading

conditions present in an impact situation may not be present in the current model (such as

out-of-plane loading and fatigue loading), the current analysis techniques can still provide

insight into the strain rate dependent deformation of composites under an impact

situation. Immediate future efforts, not including other longer term future efforts

discussed in earlier parts of this report, will include adding the ability to account for

thermal effects to the polymer constitutive equations. The micromechanics will also be

modified to allow for the analysis of woven and braided composites.
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TABLE 1.--MATERIAL PROPERTIESFORPOLYMER MATRIX MATERIALS

PR520

E-862

Strain
Rate
/sec

0.00001

Modulus

GPa

3.24

1.4 4.15

450 5.65

0.00001

Poisson's Do

Ratio 1/sec

0.38

2.93

1.4 3.26

n

lxl06 0.92

0.38

ZO

450 5.17

PEEK All 4.00 0.40

MPa

402.53

lxl06 0.80 436.59

lxl06 1.25 231.67

Zl

MPa

766.73

842.80

596.94

q Oto o_1

247.44

134.10

254.68

0.983 0.209

0.882 0.161

0.200 0.077
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Figure 1 : Experimental shear stress-shear strain curves for PR520 resin at strain rates of

7.5×10 -5/sec, 1.5/sec and 404/sec.
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Figure 11 : Experimemal and computed compressive stress-strain curves for PEEK
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effect of hydrostatic stresses, which are significant in polymers. Two representative polymers, a toughened epoxy and a

brittle epoxy, are characterized through the use of data from tensile and shear tests across a variety of strain rates. Results

computed by using the developed constitutive equations correlate well with data generated via experiments. The proce-

dure used to incorporate the constitutive equations within a micromechanics method is presented, and sample calculations

of the deformation response of a composite for various fiber orientations and strain rates are discussed.
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